Probabilistic Methods in Combinatorics

Solutions to Assignment 11

Problem 1. For a graph H, let a(H) be its independence number. Show that for the
random graph G ~ G(n,p), we have

P(la(G) = E[a(G)]| = v/nlogn) = o(1).

Solution. Note that a(G) is 1-Lipschitz with respect to vertex exposure. Therefore, by

Azuma-Hoeffding, we have

nlogn

P(la(G) — Ela(G)]| = v/nlogn) < 2exp(— ) = o(1),

2n

as wanted.

Problem 2. Prove that there is an absolute constant ¢ such that for every n > 1 there is
an interval I,, of at most ¢\/n/logn consecutive integers such that the probability that the

chromatic number of G(n,1/2) lies in I,, is at least 0.99.

Solution. Let u be the least integer such that

1

> . (1)

PIx(G) <]

Let Y be the size a smallest set of vertices S such that x(G \ S) < w.

Modifying the edges of G at a fixed vertex changes Y by at most 1, so Y is 1-Lipschitz
with respect to vertex exposure. Let A be such that 2e=**/2 = 1/300. Then by the Azuma-
Hoeffding inequality,

1

Py —E[Y]| > \Wn| < 2e3 = . (2)

I claim that E[Y] < Ay/n. Indeed, otherwise,

1
PY =0 <PE[Y]-Y >E[Y]]<P[E[Y]-Y > \/n] < 300"
But the event {Y = 0} is exactly the event {x(G) < u}, which has probability at least

1/300, by the choice of u. Thus E[Y] < A\y/n, as claimed.



It follows from the inequality (2) that

PV > 20/a] <P[Y ~ B[] > A < oo (3)

To finish, I claim that there exists a constant ¢ > 0 such that

1
PP |there is a set S of size at most 2\y/n with x(G[S]) > lc\/ﬁ < 300° (4)
ogn

Before proving (4), let us see how to use it to finish the proof. By (1), (3) and (4), we see
that with probability at least 1 — 3/300 = 0.99 the following three properties hold.

o X(G) > u,

e there is a set S of size at most 2A\y/n such that y(G'\ S) < u,

3

o X(G[S]) < 55

log

3

In particular,
c/n

logn’

u < x(G) < x(G\S) +x(G[S]) Su+

So we know that with probability at least 0.99 the chromatic number of G(n,1/2) is in the
interval [u, u + c\/n/logn).

Now, let us turn to the proof of (4). Recall Theorem 7.7 from lectures notes:

—m2+o(1)

Pla(G(m,1/2)) <k] <e :

where k = (1 + o(1))2log, m. Using the fact that & > logm, we have

—m2+to(1)

Pla(G(m,1/2)) <logm] <e

By plugging in m = n'/?, and using the union bound, it follows that the probability that

1/3

there is a set of vertices S of size at least n'/® that does not contain an independent set of

size at least %logn is at most

n o o
( 1/3) e—n2/3+ (1) < nnl/ae_n2/3+ (1) < exp(n1/3 logn — n2/3+0(1)) — 0(1).
n

In particular, with probability at least 1/300 every set of size at least n'/3 contains an

independent set of size at least %log n. Now, let S be a set of size at most 2\\/n, and write



So = 5. Repeat the following for i > 1.

If |S;| < nl/?, stop.

1
Otherwise, let U; be an independent set of size at least 3 logn in S; and set S;11 = 5; \ U;.

(Note that this is possible because we assumed that every set of size at least n'/® has an
independent set of size at least 3logn.) Let [ be the value of ¢ — 1 at the end of the
procedure. Then I < 6A\y/n/logn, and let W = S\ (U; U...UU,). We obtain a proper
colouring of G[S] with at most 6Ay/n/logn + n'/® by colouring each U; with a distinct

colour and colouring each of the vertices of W with a distinct new colour. It follows that

x(G[S]) < 6Ay/n/logn 4+ n'/? < TA/n/logn. Setting ¢ = 7\, (4) holds.



