
Probabilistic Methods in Combinatorics

Solutions to Assignment 11

Problem 1. For a graph H, let α(H) be its independence number. Show that for the

random graph G ∼ G(n, p), we have

P(|α(G)− E[α(G)]| ≥
√

n log n) = o(1).

Solution. Note that α(G) is 1-Lipschitz with respect to vertex exposure. Therefore, by

Azuma-Hoeffding, we have

P(|α(G)− E[α(G)]| ≥
√

n log n) ≤ 2 exp(−n log n

2n
) = o(1),

as wanted.

Problem 2. Prove that there is an absolute constant c such that for every n > 1 there is

an interval In of at most c
√
n/ log n consecutive integers such that the probability that the

chromatic number of G(n, 1/2) lies in In is at least 0.99.

Solution. Let u be the least integer such that

P[χ(G) ≤ u] ≥ 1

300
. (1)

Let Y be the size a smallest set of vertices S such that χ(G \ S) ≤ u.

Modifying the edges of G at a fixed vertex changes Y by at most 1, so Y is 1-Lipschitz

with respect to vertex exposure. Let λ be such that 2e−λ2/2 = 1/300. Then by the Azuma-

Hoeffding inequality,

P
[
|Y − E[Y ]| > λ

√
n
]
< 2e

−λ2

2 =
1

300
. (2)

I claim that E[Y ] ≤ λ
√
n. Indeed, otherwise,

P[Y = 0] ≤ P [E[Y ]− Y ≥ E[Y ]] ≤ P
[
E[Y ]− Y > λ

√
n
]
<

1

300
.

But the event {Y = 0} is exactly the event {χ(G) ≤ u}, which has probability at least

1/300, by the choice of u. Thus E[Y ] ≤ λ
√
n, as claimed.

1



It follows from the inequality (2) that

P
[
Y ≥ 2λ

√
n
]
≤ P

[
Y − E[Y ] ≥ λ

√
n
]
<

1

300
. (3)

To finish, I claim that there exists a constant c > 0 such that

P
[
there is a set S of size at most 2λ

√
n with χ(G[S]) ≥ c

√
n

log n

]
≤ 1

300
. (4)

Before proving (4), let us see how to use it to finish the proof. By (1), (3) and (4), we see

that with probability at least 1− 3/300 = 0.99 the following three properties hold.

• χ(G) ≥ u,

• there is a set S of size at most 2λ
√
n such that χ(G \ S) ≤ u,

• χ(G[S]) ≤ c
√
n

logn
.

In particular,

u ≤ χ(G) ≤ χ(G \ S) + χ(G[S]) ≤ u+
c
√
n

log n
.

So we know that with probability at least 0.99 the chromatic number of G(n, 1/2) is in the

interval [u, u+ c
√
n/ log n].

Now, let us turn to the proof of (4). Recall Theorem 7.7 from lectures notes:

P [α(G(m, 1/2)) ≤ k] ≤ e−m2+o(1)

,

where k = (1 + o(1))2 log2m. Using the fact that k ≥ logm, we have

P [α(G(m, 1/2)) ≤ logm] ≤ e−m2+o(1)

.

By plugging in m = n1/3, and using the union bound, it follows that the probability that

there is a set of vertices S of size at least n1/3 that does not contain an independent set of

size at least 1
3
log n is at most(
n

n1/3

)
e−n2/3+o(1) ≤ nn1/3

e−n2/3+o(1) ≤ exp(n1/3 log n− n2/3+o(1)) = o(1).

In particular, with probability at least 1/300 every set of size at least n1/3 contains an

independent set of size at least 1
3
log n. Now, let S be a set of size at most 2λ

√
n, and write

2



S0 = S. Repeat the following for i ≥ 1.

If |Si| ≤ n1/3, stop.

Otherwise, let Ui be an independent set of size at least
1

3
log n in Si and set Si+1 = Si \ Ui.

(Note that this is possible because we assumed that every set of size at least n1/3 has an

independent set of size at least 1
3
log n.) Let l be the value of i − 1 at the end of the

procedure. Then l ≤ 6λ
√
n/ log n, and let W = S \ (U1 ∪ . . . ∪ Ul). We obtain a proper

colouring of G[S] with at most 6λ
√
n/ log n + n1/3 by colouring each Ui with a distinct

colour and colouring each of the vertices of W with a distinct new colour. It follows that

χ(G[S]) ≤ 6λ
√
n/ log n+ n1/3 ≤ 7λ

√
n/ log n. Setting c = 7λ, (4) holds.
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